Stack: Difference between revisions
(Split from Programming Basics, with a lot of rewriting and a new section "Pop slide") |
(multitasking; link fixes) |
||
Line 1: | Line 1: | ||
In computer programming, a '''stack''' is any of several data structures used to store values and retrieve them in the reverse order. | |||
CPUs use stacks to track which subroutines call which other subroutines, and programs use them to pass arguments to subroutines and save values for later use. | CPUs use stacks to track which subroutines call which other subroutines, and programs use them to pass arguments to subroutines and save values for later use. | ||
Line 72: | Line 72: | ||
Most commonly, "overflow" refers to pushing more items than the stack's array can hold, and "underflow" refers to pulling from an empty stack. | Most commonly, "overflow" refers to pushing more items than the stack's array can hold, and "underflow" refers to pulling from an empty stack. | ||
But occasionally, especially with descending stacks, some people reverse these two terms. | But occasionally, especially with descending stacks, some people reverse these two terms. | ||
== Multitasking == | |||
Most operating systems for 32-bit and larger machines support [[wikipedia:Computer multitasking|multitasking]], where each process or thread gets its own stack. | |||
When switching from one thread to another, the kernel saves the thread's registers (including its stack pointer) and loads that of the other thread. | |||
Implementing this on a 6502 is difficult because all tasks have to share the $0100-$01FF page. | |||
It becomes somewhat easier on a 65816, whose 16-bit stack pointer allows putting the stack anywhere in $000000-$00FFFF, though some systems reserve much of bank $00 for I/O and ROM for compatibility with 6502 software. | |||
== Pop slide == | == Pop slide == | ||
Line 77: | Line 83: | ||
Many use only a small portion, freeing up the rest for storing other data. | Many use only a small portion, freeing up the rest for storing other data. | ||
Many NES programs write data to a buffer to be copied into video memory | Many NES programs write data to a buffer to be copied into video memory during vertical blanking. | ||
In an unrolled loop that accesses data linearly, the PLA instruction has two advantages. | In an unrolled loop that accesses data linearly, the PLA instruction has two advantages. | ||
First, it's two bytes shorter than an absolute load, allowing the loop to be unrolled more in the same ROM space. | First, it's two bytes shorter than an absolute load, allowing the loop to be unrolled more in the same ROM space. | ||
Line 95: | Line 101: | ||
jmp finish | jmp finish | ||
</pre> | </pre> | ||
The program calculates where to jump based on the length of the data to be copied. | The program calculates where to jump based on the length of the data to be copied, much as in [[wikipedia:Duff's device|Duff's device]]. | ||
When using a pop slide or anything else that uses multiple stacks, it's safest to leave a few bytes before the buffer unused in case something [[CPU interrupts|interrupts]], | When using a pop slide or anything else that uses multiple stacks, it's safest to leave a few bytes before the buffer unused in case something [[CPU interrupts|interrupts]] your process. | ||
This way, the return address and saved flags won't overwrite something important. | |||
== External links == | == External links == | ||
*[[ | *[[Wikipedia:Stack (abstract data type)]] |
Revision as of 17:59, 3 July 2013
In computer programming, a stack is any of several data structures used to store values and retrieve them in the reverse order. CPUs use stacks to track which subroutines call which other subroutines, and programs use them to pass arguments to subroutines and save values for later use.
All stacks support two operations: push to add a value, and pull (also called pop) to retrieve and remove a value. Stacks may also support peek, or retrieve a value n positions from the top without removing it.
Stacks may be implemented on top of an array or linked list. Some elements are used and others unused; an array index called the "stack pointer" sets the boundary between used and unused elements. The 6502 has hardware support for a stack implemented using a 256-byte array whose location is hardcoded at page $01 ($0100-$01FF), using the S register for a stack pointer.
There are two ways to implement a stack on top of an array. A descending stack (or one that grows downward) starts the stack pointer at the end of the array, decreases it on a push, and increases it on a pull. An ascending stack (or one that grows upward) does the opposite. The 6502, Z80, 65816, MIPS, ARM/Thumb, and PowerPC all use a descending stack.
Each of these allows two ways to interpret the stack pointer. In a full stack, the stack pointer points to the topmost value. It is moved before pushing and after pulling. In an empty stack, the stack pointer points to the element where the next value will be stored. It is moved after pushing and before pulling. ARM traditionally uses a full stack, but 6502 and 65816 use an empty stack. For example, on a 6502, if S = $FD, and the program pushes something, it'll be written to $01FD and then S becomes $FC to show that $01FC is available to store the next value. It is common practice on a 6502 to initialize the stack pointer to $FF at reset time.
Imagine stacking a bunch of dinner plates on top of one another; you can't take a plate out from the middle of the stack, you have to take one off the very top each time.
Pushing values
Let's look at some example code:
_init: ldx #$ff ; Set the stack pointer to $FF txs ; (e.g. $01FF) _pushstack: lda #$e0 ; Push value $e0 on to the stack. pha ; $01FF now contains $e0, and S is now $FE. ldy #$bb ; Push value $bb on to the stack. tya pha ; $01FE now contains $bb, and S is now $FD. txa pha ; Push value $ff (from the _init routine) on to the stack. ; $01FD now contains $ff, and S is now $FC.
At this point in our program, we have pushed 3 values on to the stack: $e0, $bb, and $ff. Because the stack grows downward, these will appear as FF BB E0 in a memory viewer. Since $ff was the last thing we pushed onto the stack, it will be the first thing we pull off the stack. We can't pull the $bb value until $ff has been pulled off, and so on -- hence the term "stack".
Pulling values
Begin with the values pushed in the previous section, with S = $FC and $01FD-$01FF = FF BB E0.
_pullstack: pla ; Pull the value $ff off the stack, and put it into the accumulator. tax ; S now becomes $FD. pla ; Pull the next value ($bb) off the stack, and put it into the X register. tay ; S now becomes $FE. pla ; Pull $e0 off the stack, and put it into the Y register. ; S now becomes $FF -- which is where we started!
Pulling may be called "popping" by people who come from an 8080, Z80, or x86 background, where the instruction is called pop.
Overflow and underflow
The terms "overflow" and "underflow" refer to situations where the program is either attempting to push more data on to the stack when S is already at $FF, or attempting to pull data off of the stack when S is already at $00. Usually this implies a PHA vs. PLA mismatch of some sort.
Most commonly, "overflow" refers to pushing more items than the stack's array can hold, and "underflow" refers to pulling from an empty stack. But occasionally, especially with descending stacks, some people reverse these two terms.
Multitasking
Most operating systems for 32-bit and larger machines support multitasking, where each process or thread gets its own stack. When switching from one thread to another, the kernel saves the thread's registers (including its stack pointer) and loads that of the other thread. Implementing this on a 6502 is difficult because all tasks have to share the $0100-$01FF page. It becomes somewhat easier on a 65816, whose 16-bit stack pointer allows putting the stack anywhere in $000000-$00FFFF, though some systems reserve much of bank $00 for I/O and ROM for compatibility with 6502 software.
Pop slide
Most NES programs do not use the entire $0100-$01FF page as a stack for subroutine return addresses. Many use only a small portion, freeing up the rest for storing other data.
Many NES programs write data to a buffer to be copied into video memory during vertical blanking. In an unrolled loop that accesses data linearly, the PLA instruction has two advantages. First, it's two bytes shorter than an absolute load, allowing the loop to be unrolled more in the same ROM space. Second, its pre-increment behavior frees the program from having to adjust the X register after a set of copies. So a program such as Battletoads may write large amounts of data to the stack and use a "pop slide" to copy the data into video memory. It starts with code like this, with the data starting one byte after the top of stack:
pla sta $2007 pla sta $2007 pla sta $2007 ; omitted pla sta $2007 jmp finish
The program calculates where to jump based on the length of the data to be copied, much as in Duff's device.
When using a pop slide or anything else that uses multiple stacks, it's safest to leave a few bytes before the buffer unused in case something interrupts your process. This way, the return address and saved flags won't overwrite something important.