User:Karatorian/6502 Instruction Set: Difference between revisions

From NESdev Wiki
Jump to navigationJump to search
(Basic wikification. Much of the content is not converted. In particular, the tables are left as ASCII diagrams and no linking has been added.)
(→‎ADC — Add memory to accumulator with carry: tentative wikifying of ascii table)
 
(2 intermediate revisions by 2 users not shown)
Line 52: Line 52:
=== The Status Register ===
=== The Status Register ===


This register consists of eight "flags" (a flag = something that indicates
This register consists of eight "flags" (a flag = something that indicates whether something has, or has not occurred).
whether something has, or has not occurred). Bits of this register
Bits of this register are altered depending on the result of arithmetic and logical operations.
are altered depending on the result of arithmetic and logical operations.
These bits are described below:
These bits are described below:


Line 69: Line 68:
:  This is the decimal mode status flag. When set, and an Add with Carry or Subtract with Carry instruction is executed, the source values are treated as valid BCD (Binary Coded Decimal, eg. 0x00–0x99 = 0–99) numbers. The result generated is also a BCD number.
:  This is the decimal mode status flag. When set, and an Add with Carry or Subtract with Carry instruction is executed, the source values are treated as valid BCD (Binary Coded Decimal, eg. 0x00–0x99 = 0–99) numbers. The result generated is also a BCD number.
;B — Break Flag
;B — Break Flag
This is set when a software interrupt (BRK instruction) is executed.
Used only in the flags pushed to the stack. If an instruction (BRK or PHP) caused the push, bit 4 is true (1) in the pushed flags. If a hardware interrupt (/NMI or /IRQ) pushed the flags, bit 4 is false (0).
; R — Reserved
; R — Reserved
:  Not used. Supposed to be logical 1 at all times.
:  Not used. Always pushed to the stack as true (logical 1).
; V — Overflow Flag
; V — Overflow Flag
:  When an arithmetic operation produces a result too large to be represented in a byte, V is set.
:  When an arithmetic operation produces a result too large to be represented in a byte, V is set.
; S — Sign Flag
; S — Sign Flag
:  This is set if the result of an operation is negative, cleared if positive.
:  This is set if the result of an operation is negative, cleared if positive. Called "N" in official 6502 data sheets.


The most commonly used flags are C, Z, V, S.
The most commonly used flags are Z, C, S, V.


=== The Program Counter ===
=== The Program Counter ===
Line 361: Line 360:
=== ADC — Add memory to accumulator with carry ===
=== ADC — Add memory to accumulator with carry ===


  Operation: A + M + C -> A, C                         N Z C I D V
*Operation: A + M + C A, C
                                                        / / / _ _ /
*Changed: N Z C V
                                (Ref: 2.2.1)
*Unmodified: I D
  +----------------+-----------------------+---------+---------+----------+
{|class="tabular"
  | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
! Addressing Mode !! Assembly Language Form !! OP CODE !! # Bytes !! # Cycles
  +----------------+-----------------------+---------+---------+----------+
|-
  | Immediate     |   ADC #Oper           |   69   |   2   |   2     |
| Immediate || ADC #Oper || 69 || 2 || 2
  | Zero Page     |   ADC Oper           |   65   |   2   |   3     |
|-
  | Zero Page,X   |   ADC Oper,X         |   75   |   2   |   4     |
| Zero Page || ADC Oper || 65 || 2 || 3
  | Absolute     |   ADC Oper           |   60   |   3   |   4     |
|-
  | Absolute,X   |   ADC Oper,X         |   7D   |   3   |   4*   |
| Zero Page,X || ADC Oper,X || 75 || 2 || 4
  | Absolute,Y   |   ADC Oper,Y         |   79   |   3   |   4*   |
|-
  | (Indirect,X) |   ADC (Oper,X)       |   61   |   2   |   6     |
| Absolute || ADC Oper || 60 || 3 || 4
  | (Indirect),Y |   ADC (Oper),Y       |   71   |   2   |   5*   |
|-
  +----------------+-----------------------+---------+---------+----------+
| Absolute,X || ADC Oper,X || 7D || 3 || 4*
  * Add 1 if page boundary is crossed.
|-
| Absolute,Y || ADC Oper,Y || 79 || 3 || 4*
|-
| (Indirect,X) || ADC (Oper,X) || 61 || 2 || 6
|-
| (Indirect),Y || ADC (Oper),Y || 71 || 2 || 5*
|}
<nowiki>*</nowiki> Add 1 if page boundary is crossed.


=== AND &mdash; Boolean and memory with accumulator ===
=== AND &mdash; Boolean and memory with accumulator ===
Line 1,185: Line 1,191:
         operation crosses page boundary
         operation crosses page boundary


        00 - BRK                        20 - JSR
== Opcode Table ==
        01 - ORA - (Indirect,X)        21 - AND - (Indirect,X)
        02 - Future Expansion          22 - Future Expansion
        03 - Future Expansion          23 - Future Expansion
        04 - Future Expansion          24 - BIT - Zero Page
        05 - ORA - Zero Page            25 - AND - Zero Page
        06 - ASL - Zero Page            26 - ROL - Zero Page
        07 - Future Expansion          27 - Future Expansion
        08 - PHP                        28 - PLP
        09 - ORA - Immediate            29 - AND - Immediate
        0A - ASL - Accumulator          2A - ROL - Accumulator
        0B - Future Expansion          2B - Future Expansion
        0C - Future Expansion          2C - BIT - Absolute
        0D - ORA - Absolute            2D - AND - Absolute
        0E - ASL - Absolute            2E - ROL - Absolute
        0F - Future Expansion          2F - Future Expansion
        10 - BPL                        30 - BMI
        11 - ORA - (Indirect),Y        31 - AND - (Indirect),Y
        12 - Future Expansion          32 - Future Expansion
        13 - Future Expansion          33 - Future Expansion
        14 - Future Expansion          34 - Future Expansion
        15 - ORA - Zero Page,X          35 - AND - Zero Page,X
        16 - ASL - Zero Page,X          36 - ROL - Zero Page,X
        17 - Future Expansion          37 - Future Expansion
        18 - CLC                        38 - SEC
        19 - ORA - Absolute,Y          39 - AND - Absolute,Y
        1A - Future Expansion          3A - Future Expansion
        1B - Future Expansion          3B - Future Expansion
        1C - Future Expansion          3C - Future Expansion
        1D - ORA - Absolute,X          3D - AND - Absolute,X
        1E - ASL - Absolute,X          3E - ROL - Absolute,X
        1F - Future Expansion          3F - Future Expansion
 
        40 - RTI                        60 - RTS
        41 - EOR - (Indirect,X)        61 - ADC - (Indirect,X)
        42 - Future Expansion          62 - Future Expansion
        43 - Future Expansion          63 - Future Expansion
        44 - Future Expansion          64 - Future Expansion
        45 - EOR - Zero Page            65 - ADC - Zero Page
        46 - LSR - Zero Page            66 - ROR - Zero Page
        47 - Future Expansion          67 - Future Expansion
        48 - PHA                        68 - PLA
        49 - EOR - Immediate            69 - ADC - Immediate
        4A - LSR - Accumulator          6A - ROR - Accumulator
        4B - Future Expansion          6B - Future Expansion
        4C - JMP - Absolute            6C - JMP - Indirect
        4D - EOR - Absolute            6D - ADC - Absolute
        4E - LSR - Absolute            6E - ROR - Absolute
        4F - Future Expansion          6F - Future Expansion
        50 - BVC                        70 - BVS
        51 - EOR - (Indirect),Y        71 - ADC - (Indirect),Y
        52 - Future Expansion          72 - Future Expansion
        53 - Future Expansion          73 - Future Expansion
        54 - Future Expansion          74 - Future Expansion
        55 - EOR - Zero Page,X          75 - ADC - Zero Page,X
        56 - LSR - Zero Page,X          76 - ROR - Zero Page,X
        57 - Future Expansion          77 - Future Expansion
        58 - CLI                        78 - SEI
        59 - EOR - Absolute,Y          79 - ADC - Absolute,Y
        5A - Future Expansion          7A - Future Expansion
        5B - Future Expansion          7B - Future Expansion
        5C - Future Expansion          7C - Future Expansion
        5D - EOR - Absolute,X          7D - ADC - Absolute,X
        5E - LSR - Absolute,X          7E - ROR - Absolute,X
        5F - Future Expansion          7F - Future Expansion
 
        80 - Future Expansion          A0 - LDY - Immediate
        81 - STA - (Indirect,X)        A1 - LDA - (Indirect,X)
        82 - Future Expansion          A2 - LDX - Immediate
        83 - Future Expansion          A3 - Future Expansion
        84 - STY - Zero Page            A4 - LDY - Zero Page
        85 - STA - Zero Page            A5 - LDA - Zero Page
        86 - STX - Zero Page            A6 - LDX - Zero Page
        87 - Future Expansion          A7 - Future Expansion
        88 - DEY                        A8 - TAY
        89 - Future Expansion          A9 - LDA - Immediate
        8A - TXA                        AA - TAX
        8B - Future Expansion          AB - Future Expansion
        8C - STY - Absolute            AC - LDY - Absolute
        8D - STA - Absolute            AD - LDA - Absolute
        8E - STX - Absolute            AE - LDX - Absolute
        8F - Future Expansion          AF - Future Expansion
        90 - BCC                        B0 - BCS
        91 - STA - (Indirect),Y        B1 - LDA - (Indirect),Y
        92 - Future Expansion          B2 - Future Expansion
        93 - Future Expansion          B3 - Future Expansion
        94 - STY - Zero Page,X          B4 - LDY - Zero Page,X
        95 - STA - Zero Page,X          B5 - LDA - Zero Page,X
        96 - STX - Zero Page,Y          B6 - LDX - Zero Page,Y
        97 - Future Expansion          B7 - Future Expansion
        98 - TYA                        B8 - CLV
        99 - STA - Absolute,Y          B9 - LDA - Absolute,Y
        9A - TXS                        BA - TSX
        9B - Future Expansion          BB - Future Expansion
        9C - Future Expansion          BC - LDY - Absolute,X
        9D - STA - Absolute,X          BD - LDA - Absolute,X
        9E - Future Expansion          BE - LDX - Absolute,Y
        9F - Future Expansion          BF - Future Expansion


        C0 - Cpy - Immediate           E0 - CPX - Immediate
{| class="wikitable"
        C1 - CMP - (Indirect,X)         E1 - SBC - (Indirect,X)
| 00 || BRK ||              || 20 || JSR ||              || 40 || RTI ||              || 60 || RTS ||              || 80 ||    ||              || A0 || LDY || Immediate    || C0 || CPY || Immediate   || E0 || CPX || Immediate
        C2 - Future Expansion          E2 - Future Expansion
|-
        C3 - Future Expansion          E3 - Future Expansion
| 01 || ORA || (Indirect,X) || 21 || AND || (Indirect,X) || 41 || EOR || (Indirect,X) || 61 || ADC || (Indirect,X) || 81 || STA || (Indirect,X) || A1 || LDA || (Indirect,X) || C1 || CMP || (Indirect,X) || E1 || SBC || (Indirect,X)
        C4 - CPY - Zero Page           E4 - CPX - Zero Page
|-
        C5 - CMP - Zero Page           E5 - SBC - Zero Page
| 02 ||    ||              || 22 ||    ||              || 42 ||    ||              || 62 ||    ||              || 82 ||    ||              || A2 || LDX || Immediate    || C2 ||    ||              || E2 ||    ||
        C6 - DEC - Zero Page           E6 - INC - Zero Page
|-
        C7 - Future Expansion          E7 - Future Expansion
| 03 ||    ||              || 23 ||    ||              || 43 ||    ||              || 63 ||    ||              || 83 ||    ||              || A3 ||    ||              || C3 ||    ||              || E3 ||    ||
        C8 - INY                       E8 - INX
|-
        C9 - CMP - Immediate           E9 - SBC - Immediate
| 04 ||    ||              || 24 || BIT || Zero Page    || 44 ||    ||              || 64 ||    ||              || 84 || STY || Zero Page    || A4 || LDY || Zero Page    || C4 || CPY || Zero Page   || E4 || CPX || Zero Page
        CA - DEX                       EA - NOP
|-
        CB - Future Expansion          EB - Future Expansion
| 05 || ORA || Zero Page    || 25 || AND || Zero Page    || 45 || EOR || Zero Page    || 65 || ADC || Zero Page    || 85 || STA || Zero Page   || A5 || LDA || Zero Page    || C5 || CMP || Zero Page   || E5 || SBC || Zero Page
        CC - CPY - Absolute             EC - CPX - Absolute
|-
        CD - CMP - Absolute             ED - SBC - Absolute
| 06 || ASL || Zero Page    || 26 || ROL || Zero Page   || 46 || LSR || Zero Page    || 66 || ROR || Zero Page    || 86 || STX || Zero Page    || A6 || LDX || Zero Page    || C6 || DEC || Zero Page   || E6 || INC || Zero Page
        CE - DEC - Absolute             EE - INC - Absolute
|-
        CF - Future Expansion          EF - Future Expansion
| 07 ||    ||              || 27 ||    ||              || 47 ||    ||              || 67 ||    ||              || 87 ||    ||              || A7 ||    ||              || C7 ||    ||              || E7 ||    ||
        D0 - BNE                       F0 - BEQ
|-
        D1 - CMP   (Indirect),Y         F1 - SBC - (Indirect),Y
| 08 || PHP ||              || 28 || PLP ||              || 48 || PHA ||              || 68 || PLA ||              || 88 || DEY ||              || A8 || TAY ||              || C8 || INY ||              || E8 || INX ||
        D2 - Future Expansion          F2 - Future Expansion
|-
        D3 - Future Expansion          F3 - Future Expansion
| 09 || ORA || Immediate    || 29 || AND || Immediate    || 49 || EOR || Immediate    || 69 || ADC || Immediate    || 89 ||    ||              || A9 || LDA || Immediate    || C9 || CMP || Immediate   || E9 || SBC || Immediate
        D4 - Future Expansion          F4 - Future Expansion
|-
        D5 - CMP - Zero Page,X         F5 - SBC - Zero Page,X
| 0A || ASL || Accumulator  || 2A || ROL || Accumulator  || 4A || LSR || Accumulator  || 6A || ROR || Accumulator  || 8A || TXA ||              || AA || TAX ||              || CA || DEX ||              || EA || NOP ||
        D6 - DEC - Zero Page,X         F6 - INC - Zero Page,X
|-
        D7 - Future Expansion          F7 - Future Expansion
| 0B ||    ||              || 2B ||    ||              || 4B ||    ||              || 6B ||    ||              || 8B ||    ||              || AB ||    ||              || CB ||    ||              || EB ||    ||
        D8 - CLD                       F8 - SED
|-
        D9 - CMP - Absolute,Y           F9 - SBC - Absolute,Y
| 0C ||    ||              || 2C || BIT || Absolute    || 4C || JMP || Absolute    || 6C || JMP || Indirect    || 8C || STY || Absolute    || AC || LDY || Absolute    || CC || CPY || Absolute     || EC || CPX || Absolute
        DA - Future Expansion          FA - Future Expansion
|-
        DB - Future Expansion          FB - Future Expansion
| 0D || ORA || Absolute    || 2D || AND || Absolute    || 4D || EOR || Absolute    || 6D || ADC || Absolute    || 8D || STA || Absolute    || AD || LDA || Absolute     || CD || CMP || Absolute     || ED || SBC || Absolute
        DC - Future Expansion          FC - Future Expansion
|-
        DD - CMP - Absolute,X           FD - SBC - Absolute,X
| 0E || ASL || Absolute    || 2E || ROL || Absolute    || 4E || LSR || Absolute    || 6E || ROR || Absolute    || 8E || STX || Absolute    || AE || LDX || Absolute     || CE || DEC || Absolute     || EE || INC || Absolute
        DE - DEC - Absolute,X           FE - INC - Absolute,X
|-
        DF - Future Expansion          FF - Future Expansion
| 0F ||    ||              || 2F ||    ||              || 4F ||    ||              || 6F ||    ||              || 8F ||    ||              || AF ||    ||              || CF ||    ||              || EF ||    ||
|-
| 10 || BPL ||              || 30 || BMI ||              || 50 || BVC ||              || 70 || BVS ||              || 90 || BCC ||              || B0 || BCS ||              || D0 || BNE ||              || F0 || BEQ ||
|-
| 11 || ORA || (Indirect),Y || 31 || AND || (Indirect),Y || 51 || EOR || (Indirect),Y || 71 || ADC || (Indirect),Y || 91 || STA || (Indirect),Y || B1 || LDA || (Indirect),Y || D1 || CMP || (Indirect),Y || F1 || SBC || (Indirect),Y
|-
| 12 ||    ||              || 32 ||    ||              || 52 ||    ||              || 72 ||    ||              || 92 ||    ||              || B2 ||    ||              || D2 ||    ||              || F2 ||    ||
|-
| 13 ||    ||              || 33 ||    ||              || 53 ||    ||              || 73 ||    ||              || 93 ||    ||              || B3 ||    ||              || D3 ||    ||              || F3 ||    ||
|-
| 14 ||    ||              || 34 ||    ||              || 54 ||    ||              || 74 ||    ||              || 94 || STY || Zero Page,X  || B4 || LDY || Zero Page,X  || D4 ||    ||              || F4 ||    ||
|-
| 15 || ORA || Zero Page,X  || 35 || AND || Zero Page,X  || 55 || EOR || Zero Page,X  || 75 || ADC || Zero Page,X  || 95 || STA || Zero Page,X  || B5 || LDA || Zero Page,X  || D5 || CMP || Zero Page,X || F5 || SBC || Zero Page,X
|-
| 16 || ASL || Zero Page,X  || 36 || ROL || Zero Page,X  || 56 || LSR || Zero Page,X  || 76 || ROR || Zero Page,X || 96 || STX || Zero Page,Y  || B6 || LDX || Zero Page,Y  || D6 || DEC || Zero Page,X || F6 || INC || Zero Page,X
|-
| 17 ||    ||              || 37 ||    ||              || 57 ||    ||              || 77 ||    ||              || 97 ||    ||              || B7 ||    ||              || D7 ||    ||              || F7 ||    ||
|-
| 18 || CLC ||              || 38 || SEC ||              || 58 || CLI ||              || 78 || SEI ||              || 98 || TYA ||              || B8 || CLV ||              || D8 || CLD ||              || F8 || SED ||
|-
| 19 || ORA || Absolute,Y  || 39 || AND || Absolute,Y  || 59 || EOR || Absolute,Y  || 79 || ADC || Absolute,Y  || 99 || STA || Absolute,Y  || B9 || LDA || Absolute,Y  || D9 || CMP || Absolute,Y   || F9 || SBC || Absolute,Y
|-
| 1A ||    ||              || 3A ||    ||              || 5A ||    ||              || 7A ||    ||              || 9A || TXS ||              || BA || TSX ||              || DA ||    ||              || FA ||    ||
|-
| 1B ||    ||              || 3B ||    ||              || 5B ||    ||              || 7B ||    ||              || 9B ||    ||              || BB ||    ||              || DB ||    ||              || FB ||    ||
|-
| 1C ||    ||              || 3C ||    ||              || 5C ||    ||              || 7C ||    ||              || 9C ||    ||              || BC || LDY || Absolute,X  || DC ||    ||              || FC ||    ||
|-
| 1D || ORA || Absolute,X  || 3D || AND || Absolute,X  || 5D || EOR || Absolute,X  || 7D || ADC || Absolute,X  || 9D || STA || Absolute,X  || BD || LDA || Absolute,X  || DD || CMP || Absolute,X   || FD || SBC || Absolute,X
|-
| 1E || ASL || Absolute,X  || 3E || ROL || Absolute,X   || 5E || LSR || Absolute,X  || 7E || ROR || Absolute,X  || 9E ||    ||              || BE || LDX || Absolute,Y  || DE || DEC || Absolute,X   || FE || INC || Absolute,X
|-
| 1F ||    ||              || 3F ||    ||              || 5F ||    ||              || 7F ||    ||              || 9F ||    ||              || BF ||    ||              || DF ||    ||              || FF ||    ||
|}


== Instruction Operation ==
== Instruction Operation ==

Latest revision as of 05:14, 12 October 2013

6502 Microprocessor

  • Revision 1.02 by _Bnu.
  • Revision 1.03 by _Gist.
  • Wikification by Karatorian.

Most of the following information has been taking out of the Commodore 64 Programmers Reference Manual simply because it was available in electronic form and there appears to be no difference between this documentation and the 6502 documentation, they are both from the 6500 family after all. I've made changes and additions where appropriate.

In theory you should be able to use any code you can find for emulating the 6510 (the C64 processor).

The Registers Inside The 6502 Microprocessor

Almost all calculations are done in the microprocessor. Registers are special pieces of memory in the processor which are used to carry out, and store information about calculations. The 6502 has the following registers:

The Accumulator

This is the most important register in the microprocessor. Various machine language instructions allow you to copy the contents of a memory location into the accumulator, copy the contents of the accumulator into a memory location, modify the contents of the accumulator or some other register directly, without affecting any memory. And the accumulator is the only register that has instructions for performing math.

The X Index Register

This is a very important register. There are instructions for nearly all of the transformations you can make to the accumulator. But there are other instructions for things that only the X register can do. Various machine language instructions allow you to copy the contents of a memory location into the X register, copy the contents of the X register into a memory location, and modify the contents of the X, or some other register directly.

The Y Index Register

This is a very important register. There are instructions for nearly all of the transformations you can make to the accumulator, and the X register. But there are other instructions for things that only the Y register can do. Various machine language instructions allow you to copy the contents of a memory location into the Y register, copy the contents of the Y register into a memory location, and modify the contents of the Y, or some other register directly.

The Status Register

This register consists of eight "flags" (a flag = something that indicates whether something has, or has not occurred). Bits of this register are altered depending on the result of arithmetic and logical operations. These bits are described below:

    Bit No.       7   6   5   4   3   2   1   0
                  S   V   R   B   D   I   Z   C
C – Carry Flag
This holds the carry out of the most significant bit in any arithmetic operation. In subtraction operations however, this flag is cleared—set to 0—if a borrow is required, set to 1—if no borrow is required. The carry flag is also used in shift and rotate logical operations.
Z — Zero Flag
This is set to 1 when any arithmetic or logical operation produces a zero result, and is set to 0 if the result is non-zero.
I — Interrupt Disable Flag
This is an interrupt enable/disable flag. If it is set, interrupts are disabled. If it is cleared, interrupts are enabled.
D — Decimal Mode Flag
This is the decimal mode status flag. When set, and an Add with Carry or Subtract with Carry instruction is executed, the source values are treated as valid BCD (Binary Coded Decimal, eg. 0x00–0x99 = 0–99) numbers. The result generated is also a BCD number.
B — Break Flag
Used only in the flags pushed to the stack. If an instruction (BRK or PHP) caused the push, bit 4 is true (1) in the pushed flags. If a hardware interrupt (/NMI or /IRQ) pushed the flags, bit 4 is false (0).
R — Reserved
Not used. Always pushed to the stack as true (logical 1).
V — Overflow Flag
When an arithmetic operation produces a result too large to be represented in a byte, V is set.
S — Sign Flag
This is set if the result of an operation is negative, cleared if positive. Called "N" in official 6502 data sheets.

The most commonly used flags are Z, C, S, V.

The Program Counter

This contains the address of the current machine language instruction being executed. Since the operating system is always "RUN"ning in the Commodore VIC-20 (or, for that matter, any computer), the program counter is always changing. It could only be stopped by halting the microprocessor in some way.

The Stack Pointer

This register contains the location of the first empty place on the stack. The stack is used for temporary storage by machine language programs, and by the computer.

Addressing Modes

Instructions need operands to work on. There are various ways of indicating where the processor is to get these operands. The different methods used to do this are called addressing modes. The 6502 offers 11 modes, as described below.

Immediate

In this mode the operand's value is given in the instruction itself. In assembly language this is indicated by "#" before the operand.

 eg.  LDA #$0A - means "load the accumulator with the hex value 0A"

In machine code different modes are indicated by different codes. So LDA would be translated into different codes depending on the addressing mode.

 In this mode, it is: $A9 $0A

Absolute and Zero-page Absolute

In these modes the operands address is given.

 eg.  LDA $31F6 - (assembler)
      $AD $31F6 - (machine code)

If the address is on zero page—i.e. any address where the high byte is 00—only 1 byte is needed for the address. The processor automatically fills the 00 high byte.

 eg.  LDA $F4
      $A5 $F4

Note the different instruction codes for the different modes. Note also that for 2 byte addresses, the low byte is store first,

 eg. LDA $31F6 is stored as three bytes in memory, $AD $F6 $31.

Zero-page absolute is usually just called zero-page.

Implied

No operand addresses are required for this mode. They are implied by the instruction.

 eg.  TAX - (transfer accumulator contents to X-register)
      $AA

Accumulator

In this mode the instruction operates on data in the accumulator, so no operands are needed.

 eg.  LSR - logical bit shift right
      $4A

Indexed and Zero-page Indexed

In these modes the address given is added to the value in either the X or Y index register to give the actual address of the operand.

 eg.  LDA $31F6, Y
      $D9 $31F6
      LDA $31F6, X
      $DD $31F6

Note that the different operation codes determine the index register used. In the zero-page version, you should note that the X and Y registers are not interchangeable. Most instructions which can be used with zero-page indexing do so with X only.

 eg.  LDA $20, X
      $B5 $20

Indirect

This mode applies only to the JMP instruction - JuMP to new location. It is indicated by parenthesis around the operand. The operand is the address of the bytes whose value is the new location.

 eg.  JMP ($215F)
 Assume the following -        byte      value
                               $215F     $76
                               $2160     $30

This instruction takes the value of bytes $215F, $2160 and uses that as the address to jump to - i.e. $3076 (remember that addresses are stored with low byte first).

Pre-Indexed Indirect

In this mode a zer0-page address is added to the contents of the X-register to give the address of the bytes holding the address of the operand. The indirection is indicated by parenthesis in assembly language.

 eg.  LDA ($3E, X)
      $A1 $3E
 Assume the following -        byte      value
                               X-reg.    $05
                               $0043     $15
                               $0044     $24
                               $2415     $6E

Then the instruction is executed by:

 (i)   adding $3E and $05 = $0043
 (ii)  getting address contained in bytes $0043, $0044 = $2415
 (iii) loading contents of $2415 - i.e. $6E - into accumulator
 Note a) When adding the 1-byte address and the X-register, wrap around
         addition is used - i.e. the sum is always a zero-page address.
         eg. FF + 2 = 0001 not 0101 as you might expect.
         DON'T FORGET THIS WHEN EMULATING THIS MODE.
      b) Only the X register is used in this mode.

Post-Indexed Indirect

In this mode the contents of a zero-page address (and the following byte) give the indirect addressm which is added to the contents of the Y-register to yield the actual address of the operand. Again, inassembly language, the instruction is indicated by parenthesis.

 eg.  LDA ($4C), Y

Note that the parenthesis are only around the 2nd byte of the instruction since it is the part that does the indirection.

 Assume the following -        byte       value
                               $004C      $00
                               $004D      $21
                               Y-reg.     $05
                               $2105      $6D

Then the instruction above executes by:

 (i)   getting the address in bytes $4C, $4D = $2100
 (ii)  adding the contents of the Y-register = $2105
 (111) loading the contents of the byte $2105 - i.e. $6D into the
       accumulator.
 Note: only the Y-register is used in this mode.

Relative

This mode is used with Branch-on-Condition instructions. It is probably the mode you will use most often. A 1 byte value is added to the program counter, and the program continues execution from that address. The 1 byte number is treated as a signed number - i.e. if bit 7 is 1, the number given byt bits 0-6 is negative; if bit 7 is 0, the number is positive. This enables a branch displacement of up to 127 bytes in either direction.

 eg  bit no.  7 6 5 4 3 2 1 0    signed value          unsigned value
     value    1 0 1 0 0 1 1 1    -39                   $A7
     value    0 0 1 0 0 1 1 1    +39                   $27

Instruction example:

   BEQ $A7
   $F0 $A7

This instruction will check the zero status bit. If it is set, 39 decimal will be subtracted from the program counter and execution continues from that address. If the zero status bit is not set, execution continues from the following instruction.

 Notes:  a) The program counter points to the start of the instruction
 after the branch instruction before the branch displacement is added.
 Remember to take this into account when calculating displacements.
         b) Branch-on-condition instructions work by checking the relevant
 status bits in the status register. Make sure that they have been set or
 unset as you want them. This is often done using a CMP instruction.
         c) If you find you need to branch further than 127 bytes, use the
 opposite branch-on-condition and a JMP.

MCS6502 Microprocessor Instruction Set

               The following notation applies to this summary:

    A       Accumulator                  EOR     Logical Exclusive Or

    X, Y    Index Registers              fromS   Transfer from Stack

    M       Memory                       toS     Transfer to Stack

    P       Processor Status Register    ->      Transfer to

    S       Stack Pointer                <-      Transfer from

    /       Change                       V       Logical OR

    _       No Change                    PC      Program Counter

    +       Add                          PCH     Program Counter High

    /\      Logical AND                  PCL     Program Counter Low

    -       Subtract                     OPER    OPERAND

                                         #       IMMEDIATE ADDRESSING MODE

 Note: At the top of each table is located in parentheses a reference
       number (Ref: XX) which directs the user to that Section in the
       MCS6500 Microcomputer Family Programming Manual in which the
       instruction is defined and discussed.

ADC — Add memory to accumulator with carry

  • Operation: A + M + C → A, C
  • Changed: N Z C V
  • Unmodified: I D
Addressing Mode Assembly Language Form OP CODE # Bytes # Cycles
Immediate ADC #Oper 69 2 2
Zero Page ADC Oper 65 2 3
Zero Page,X ADC Oper,X 75 2 4
Absolute ADC Oper 60 3 4
Absolute,X ADC Oper,X 7D 3 4*
Absolute,Y ADC Oper,Y 79 3 4*
(Indirect,X) ADC (Oper,X) 61 2 6
(Indirect),Y ADC (Oper),Y 71 2 5*

* Add 1 if page boundary is crossed.

AND — Boolean and memory with accumulator

 Operation:  A /\ M -> A                               N Z C I D V
                                                       / / _ _ _ _
                              (Ref: 2.2.3.0)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Immediate     |   AND #Oper           |    29   |    2    |    2     |
 |  Zero Page     |   AND Oper            |    25   |    2    |    3     |
 |  Zero Page,X   |   AND Oper,X          |    35   |    2    |    4     |
 |  Absolute      |   AND Oper            |    2D   |    3    |    4     |
 |  Absolute,X    |   AND Oper,X          |    3D   |    3    |    4*    |
 |  Absolute,Y    |   AND Oper,Y          |    39   |    3    |    4*    |
 |  (Indirect,X)  |   AND (Oper,X)        |    21   |    2    |    6     |
 |  (Indirect,Y)  |   AND (Oper),Y        |    31   |    2    |    5     |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 if page boundary is crossed.

ASL — Shift left one bit (memory or accumulator)

                  +-+-+-+-+-+-+-+-+
 Operation:  C <- |7|6|5|4|3|2|1|0| <- 0
                  +-+-+-+-+-+-+-+-+                    N Z C I D V
                                                       / / / _ _ _
                                (Ref: 10.2)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Accumulator   |   ASL A               |    0A   |    1    |    2     |
 |  Zero Page     |   ASL Oper            |    06   |    2    |    5     |
 |  Zero Page,X   |   ASL Oper,X          |    16   |    2    |    6     |
 |  Absolute      |   ASL Oper            |    0E   |    3    |    6     |
 |  Absolute, X   |   ASL Oper,X          |    1E   |    3    |    7     |
 +----------------+-----------------------+---------+---------+----------+

BCC — Branch on carry clear

                                                       N Z C I D V
 Operation:  Branch on C = 0                           _ _ _ _ _ _
                              (Ref: 4.1.1.3)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Relative      |   BCC Oper            |    90   |    2    |    2*    |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 if branch occurs to same page.
 * Add 2 if branch occurs to different page.

BCS — Branch on carry set

 Operation:  Branch on C = 1                           N Z C I D V
                                                       _ _ _ _ _ _
                              (Ref: 4.1.1.4)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Relative      |   BCS Oper            |    B0   |    2    |    2*    |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 if branch occurs to same  page.
 * Add 2 if branch occurs to next  page.

BEQ — Branch on result zero

                                                       N Z C I D V
 Operation:  Branch on Z = 1                           _ _ _ _ _ _
                              (Ref: 4.1.1.5)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Relative      |   BEQ Oper            |    F0   |    2    |    2*    |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 if branch occurs to same  page.
 * Add 2 if branch occurs to next  page.

BIT — Test bits in memory with accumulator

 Operation:  A /\ M, M7 -> N, M6 -> V

 Bit 6 and 7 are transferred to the status register.   N Z C I D V
 If the result of A /\ M is zero then Z = 1, otherwise M7/ _ _ _ M6
 Z = 0
                              (Ref: 4.2.1.1)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Zero Page     |   BIT Oper            |    24   |    2    |    3     |
 |  Absolute      |   BIT Oper            |    2C   |    3    |    4     |
 +----------------+-----------------------+---------+---------+----------+

BMI — Branch on result minus

 Operation:  Branch on N = 1                           N Z C I D V
                                                       _ _ _ _ _ _
                              (Ref: 4.1.1.1)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Relative      |   BMI Oper            |    30   |    2    |    2*    |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 if branch occurs to same page.
 * Add 1 if branch occurs to different page.

BNE — Branch on result not zero

 Operation:  Branch on Z = 0                           N Z C I D V
                                                       _ _ _ _ _ _
                              (Ref: 4.1.1.6)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Relative      |   BMI Oper            |    D0   |    2    |    2*    |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 if branch occurs to same page.
 * Add 2 if branch occurs to different page.

BPL — Branch on result plus

 Operation:  Branch on N = 0                           N Z C I D V
                                                       _ _ _ _ _ _
                              (Ref: 4.1.1.2)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Relative      |   BPL Oper            |    10   |    2    |    2*    |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 if branch occurs to same page.
 * Add 2 if branch occurs to different page.

BRK — Force break

 Operation:  Forced Interrupt PC + 2 toS P toS         N Z C I D V
                                                       _ _ _ 1 _ _
                                (Ref: 9.11)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   BRK                 |    00   |    1    |    7     |
 +----------------+-----------------------+---------+---------+----------+
 1. A BRK command cannot be masked by setting I.

BVC — Branch on overflow clear

 Operation:  Branch on V = 0                           N Z C I D V
                                                       _ _ _ _ _ _
                              (Ref: 4.1.1.8)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Relative      |   BVC Oper            |    50   |    2    |    2*    |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 if branch occurs to same page.
 * Add 2 if branch occurs to different page.

BVS — Branch on overflow set

 Operation:  Branch on V = 1                           N Z C I D V
                                                       _ _ _ _ _ _
                              (Ref: 4.1.1.7)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Relative      |   BVS Oper            |    70   |    2    |    2*    |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 if branch occurs to same page.
 * Add 2 if branch occurs to different page.

CLC — Clear carry flag

 Operation:  0 -> C                                    N Z C I D V
                                                       _ _ 0 _ _ _
                               (Ref: 3.0.2)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   CLC                 |    18   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

CLD — Clear decimal mode

 Operation:  0 -> D                                    N A C I D V
                                                       _ _ _ _ 0 _
                               (Ref: 3.3.2)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   CLD                 |    D8   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

CLI — Clear interrupt disable bit

 Operation: 0 -> I                                     N Z C I D V
                                                       _ _ _ 0 _ _
                               (Ref: 3.2.2)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   CLI                 |    58   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

CLV — Clear overflow flag

 Operation: 0 -> V                                     N Z C I D V
                                                       _ _ _ _ _ 0
                               (Ref: 3.6.1)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   CLV                 |    B8   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

CMP — Compare memory and accumulator

 Operation:  A - M                                     N Z C I D V
                                                       / / / _ _ _
                               (Ref: 4.2.1)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Immediate     |   CMP #Oper           |    C9   |    2    |    2     |
 |  Zero Page     |   CMP Oper            |    C5   |    2    |    3     |
 |  Zero Page,X   |   CMP Oper,X          |    D5   |    2    |    4     |
 |  Absolute      |   CMP Oper            |    CD   |    3    |    4     |
 |  Absolute,X    |   CMP Oper,X          |    DD   |    3    |    4*    |
 |  Absolute,Y    |   CMP Oper,Y          |    D9   |    3    |    4*    |
 |  (Indirect,X)  |   CMP (Oper,X)        |    C1   |    2    |    6     |
 |  (Indirect),Y  |   CMP (Oper),Y        |    D1   |    2    |    5*    |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 if page boundary is crossed.

CPX — Compare Memory and Index X

                                                       N Z C I D V
 Operation:  X - M                                     / / / _ _ _
                                (Ref: 7.8)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Immediate     |   CPX *Oper           |    E0   |    2    |    2     |
 |  Zero Page     |   CPX Oper            |    E4   |    2    |    3     |
 |  Absolute      |   CPX Oper            |    EC   |    3    |    4     |
 +----------------+-----------------------+---------+---------+----------+

CPY — Compare memory and index Y

                                                       N Z C I D V
 Operation:  Y - M                                     / / / _ _ _
                                (Ref: 7.9)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Immediate     |   CPY *Oper           |    C0   |    2    |    2     |
 |  Zero Page     |   CPY Oper            |    C4   |    2    |    3     |
 |  Absolute      |   CPY Oper            |    CC   |    3    |    4     |
 +----------------+-----------------------+---------+---------+----------+

DEC — Decrement memory by one

 Operation:  M - 1 -> M                                N Z C I D V
                                                       / / _ _ _ _
                                (Ref: 10.7)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Zero Page     |   DEC Oper            |    C6   |    2    |    5     |
 |  Zero Page,X   |   DEC Oper,X          |    D6   |    2    |    6     |
 |  Absolute      |   DEC Oper            |    CE   |    3    |    6     |
 |  Absolute,X    |   DEC Oper,X          |    DE   |    3    |    7     |
 +----------------+-----------------------+---------+---------+----------+

DEX — Decrement index X by one

 Operation:  X - 1 -> X                                N Z C I D V
                                                       / / _ _ _ _
                                (Ref: 7.6)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   DEX                 |    CA   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

DEY — Decrement index Y by one

 Operation:  Y - 1 -> Y                                N Z C I D V
                                                       / / _ _ _ _
                                (Ref: 7.7)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   DEY                 |    88   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

EOR — Boolean exclusive or memory with accumulator

 Operation:  A EOR M -> A                              N Z C I D V
                                                       / / _ _ _ _
                              (Ref: 2.2.3.2)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Immediate     |   EOR #Oper           |    49   |    2    |    2     |
 |  Zero Page     |   EOR Oper            |    45   |    2    |    3     |
 |  Zero Page,X   |   EOR Oper,X          |    55   |    2    |    4     |
 |  Absolute      |   EOR Oper            |    40   |    3    |    4     |
 |  Absolute,X    |   EOR Oper,X          |    5D   |    3    |    4*    |
 |  Absolute,Y    |   EOR Oper,Y          |    59   |    3    |    4*    |
 |  (Indirect,X)  |   EOR (Oper,X)        |    41   |    2    |    6     |
 |  (Indirect),Y  |   EOR (Oper),Y        |    51   |    2    |    5*    |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 if page boundary is crossed.

INC — Increment memory by one

                                                       N Z C I D V
 Operation:  M + 1 -> M                                / / _ _ _ _
                                (Ref: 10.6)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Zero Page     |   INC Oper            |    E6   |    2    |    5     |
 |  Zero Page,X   |   INC Oper,X          |    F6   |    2    |    6     |
 |  Absolute      |   INC Oper            |    EE   |    3    |    6     |
 |  Absolute,X    |   INC Oper,X          |    FE   |    3    |    7     |
 +----------------+-----------------------+---------+---------+----------+

INX — Increment Index X by one

                                                       N Z C I D V
 Operation:  X + 1 -> X                                / / _ _ _ _
                                (Ref: 7.4)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   INX                 |    E8   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

INY — Increment Index Y by one

 Operation:  Y + 1 -> Y                                N Z C I D V
                                                       / / _ _ _ _
                                (Ref: 7.5)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   INY                 |    C8   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

JMP — Jump to new location

 Operation:  (PC + 1) -> PCL                           N Z C I D V
             (PC + 2) -> PCH   (Ref: 4.0.2)            _ _ _ _ _ _
                               (Ref: 9.8.1)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Absolute      |   JMP Oper            |    4C   |    3    |    3     |
 |  Indirect      |   JMP (Oper)          |    6C   |    3    |    5     |
 +----------------+-----------------------+---------+---------+----------+

JSR — Jump to new location saving return address

 Operation:  PC + 2 toS, (PC + 1) -> PCL               N Z C I D V
                         (PC + 2) -> PCH               _ _ _ _ _ _
                                (Ref: 8.1)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Absolute      |   JSR Oper            |    20   |    3    |    6     |
 +----------------+-----------------------+---------+---------+----------+

LDA — Load accumulator with memory

 Operation:  M -> A                                    N Z C I D V
                                                       / / _ _ _ _
                               (Ref: 2.1.1)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Immediate     |   LDA #Oper           |    A9   |    2    |    2     |
 |  Zero Page     |   LDA Oper            |    A5   |    2    |    3     |
 |  Zero Page,X   |   LDA Oper,X          |    B5   |    2    |    4     |
 |  Absolute      |   LDA Oper            |    AD   |    3    |    4     |
 |  Absolute,X    |   LDA Oper,X          |    BD   |    3    |    4*    |
 |  Absolute,Y    |   LDA Oper,Y          |    B9   |    3    |    4*    |
 |  (Indirect,X)  |   LDA (Oper,X)        |    A1   |    2    |    6     |
 |  (Indirect),Y  |   LDA (Oper),Y        |    B1   |    2    |    5*    |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 if page boundary is crossed.

LDX — Load index X with memory

 Operation:  M -> X                                    N Z C I D V
                                                       / / _ _ _ _
                                (Ref: 7.0)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Immediate     |   LDX #Oper           |    A2   |    2    |    2     |
 |  Zero Page     |   LDX Oper            |    A6   |    2    |    3     |
 |  Zero Page,Y   |   LDX Oper,Y          |    B6   |    2    |    4     |
 |  Absolute      |   LDX Oper            |    AE   |    3    |    4     |
 |  Absolute,Y    |   LDX Oper,Y          |    BE   |    3    |    4*    |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 when page boundary is crossed.

LDY — Load index Y with memory

                                                       N Z C I D V
 Operation:  M -> Y                                    / / _ _ _ _
                                (Ref: 7.1)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Immediate     |   LDY #Oper           |    A0   |    2    |    2     |
 |  Zero Page     |   LDY Oper            |    A4   |    2    |    3     |
 |  Zero Page,X   |   LDY Oper,X          |    B4   |    2    |    4     |
 |  Absolute      |   LDY Oper            |    AC   |    3    |    4     |
 |  Absolute,X    |   LDY Oper,X          |    BC   |    3    |    4*    |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 when page boundary is crossed.

LSR — Shift right one bit (memory or accumulator)

                  +-+-+-+-+-+-+-+-+
 Operation:  0 -> |7|6|5|4|3|2|1|0| -> C               N Z C I D V
                  +-+-+-+-+-+-+-+-+                    0 / / _ _ _
                                (Ref: 10.1)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Accumulator   |   LSR A               |    4A   |    1    |    2     |
 |  Zero Page     |   LSR Oper            |    46   |    2    |    5     |
 |  Zero Page,X   |   LSR Oper,X          |    56   |    2    |    6     |
 |  Absolute      |   LSR Oper            |    4E   |    3    |    6     |
 |  Absolute,X    |   LSR Oper,X          |    5E   |    3    |    7     |
 +----------------+-----------------------+---------+---------+----------+

NOP — No operation

                                                       N Z C I D V
 Operation:  No Operation (2 cycles)                   _ _ _ _ _ _

 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   NOP                 |    EA   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

ORA — Boolean or memory with accumulator

 Operation: A V M -> A                                 N Z C I D V
                                                       / / _ _ _ _
                              (Ref: 2.2.3.1)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Immediate     |   ORA #Oper           |    09   |    2    |    2     |
 |  Zero Page     |   ORA Oper            |    05   |    2    |    3     |
 |  Zero Page,X   |   ORA Oper,X          |    15   |    2    |    4     |
 |  Absolute      |   ORA Oper            |    0D   |    3    |    4     |
 |  Absolute,X    |   ORA Oper,X          |    10   |    3    |    4*    |
 |  Absolute,Y    |   ORA Oper,Y          |    19   |    3    |    4*    |
 |  (Indirect,X)  |   ORA (Oper,X)        |    01   |    2    |    6     |
 |  (Indirect),Y  |   ORA (Oper),Y        |    11   |    2    |    5     |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 on page crossing

PHA — Push accumulator on stack

 Operation:  A toS                                     N Z C I D V
                                                       _ _ _ _ _ _
                                (Ref: 8.5)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   PHA                 |    48   |    1    |    3     |
 +----------------+-----------------------+---------+---------+----------+

PHP — Push processor status on stack

 Operation:  P toS                                     N Z C I D V
                                                       _ _ _ _ _ _
                                (Ref: 8.11)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   PHP                 |    08   |    1    |    3     |
 +----------------+-----------------------+---------+---------+----------+

PLA — Pull accumulator from stack

 Operation:  A fromS                                   N Z C I D V
                                                       _ _ _ _ _ _
                                (Ref: 8.6)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   PLA                 |    68   |    1    |    4     |
 +----------------+-----------------------+---------+---------+----------+

PLP — Pull processor status from stack

 Operation:  P fromS                                   N Z C I D V
                                                        From Stack
                                (Ref: 8.12)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   PLP                 |    28   |    1    |    4     |
 +----------------+-----------------------+---------+---------+----------+

ROL — Rotate one bit left (memory or accumulator)

              +------------------------------+
              |         M or A               |
              |   +-+-+-+-+-+-+-+-+    +-+   |
 Operation:   +-< |7|6|5|4|3|2|1|0| <- |C| <-+         N Z C I D V
                  +-+-+-+-+-+-+-+-+    +-+             / / / _ _ _
                                (Ref: 10.3)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Accumulator   |   ROL A               |    2A   |    1    |    2     |
 |  Zero Page     |   ROL Oper            |    26   |    2    |    5     |
 |  Zero Page,X   |   ROL Oper,X          |    36   |    2    |    6     |
 |  Absolute      |   ROL Oper            |    2E   |    3    |    6     |
 |  Absolute,X    |   ROL Oper,X          |    3E   |    3    |    7     |
 +----------------+-----------------------+---------+---------+----------+

ROR — Rotate one bit right (memory or accumulator)

              +------------------------------+
              |                              |
              |   +-+    +-+-+-+-+-+-+-+-+   |
 Operation:   +-> |C| -> |7|6|5|4|3|2|1|0| >-+         N Z C I D V
                  +-+    +-+-+-+-+-+-+-+-+             / / / _ _ _
                                (Ref: 10.4)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Accumulator   |   ROR A               |    6A   |    1    |    2     |
 |  Zero Page     |   ROR Oper            |    66   |    2    |    5     |
 |  Zero Page,X   |   ROR Oper,X          |    76   |    2    |    6     |
 |  Absolute      |   ROR Oper            |    6E   |    3    |    6     |
 |  Absolute,X    |   ROR Oper,X          |    7E   |    3    |    7     |
 +----------------+-----------------------+---------+---------+----------+

   Note: ROR instruction is available on MCS650X microprocessors after
         June, 1976.

RTI — Return from interrupt

                                                       N Z C I D V
 Operation:  P fromS PC fromS                           From Stack
                                (Ref: 9.6)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   RTI                 |    4D   |    1    |    6     |
 +----------------+-----------------------+---------+---------+----------+

RTS — Return from subroutine

                                                       N Z C I D V
 Operation:  PC fromS, PC + 1 -> PC                    _ _ _ _ _ _
                                (Ref: 8.2)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   RTS                 |    60   |    1    |    6     |
 +----------------+-----------------------+---------+---------+----------+

SBC — Subtract memory from accumulator with borrow

                     -
 Operation:  A - M - C -> A                            N Z C I D V
        -                                              / / / _ _ /
   Note:C = Borrow             (Ref: 2.2.2)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Immediate     |   SBC #Oper           |    E9   |    2    |    2     |
 |  Zero Page     |   SBC Oper            |    E5   |    2    |    3     |
 |  Zero Page,X   |   SBC Oper,X          |    F5   |    2    |    4     |
 |  Absolute      |   SBC Oper            |    ED   |    3    |    4     |
 |  Absolute,X    |   SBC Oper,X          |    FD   |    3    |    4*    |
 |  Absolute,Y    |   SBC Oper,Y          |    F9   |    3    |    4*    |
 |  (Indirect,X)  |   SBC (Oper,X)        |    E1   |    2    |    6     |
 |  (Indirect),Y  |   SBC (Oper),Y        |    F1   |    2    |    5     |
 +----------------+-----------------------+---------+---------+----------+
 * Add 1 when page boundary is crossed.

SEC — Set carry flag

 Operation:  1 -> C                                    N Z C I D V
                                                       _ _ 1 _ _ _
                               (Ref: 3.0.1)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   SEC                 |    38   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

SED — Set decimal mode

                                                       N Z C I D V
 Operation:  1 -> D                                    _ _ _ _ 1 _
                               (Ref: 3.3.1)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   SED                 |    F8   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

SEI — Set interrupt disable status

                                                       N Z C I D V
 Operation:  1 -> I                                    _ _ _ 1 _ _
                               (Ref: 3.2.1)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   SEI                 |    78   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

STA — Store accumulator in memory

 Operation:  A -> M                                    N Z C I D V
                                                       _ _ _ _ _ _
                               (Ref: 2.1.2)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Zero Page     |   STA Oper            |    85   |    2    |    3     |
 |  Zero Page,X   |   STA Oper,X          |    95   |    2    |    4     |
 |  Absolute      |   STA Oper            |    8D   |    3    |    4     |
 |  Absolute,X    |   STA Oper,X          |    9D   |    3    |    5     |
 |  Absolute,Y    |   STA Oper, Y         |    99   |    3    |    5     |
 |  (Indirect,X)  |   STA (Oper,X)        |    81   |    2    |    6     |
 |  (Indirect),Y  |   STA (Oper),Y        |    91   |    2    |    6     |
 +----------------+-----------------------+---------+---------+----------+

STX — Store index X in memory

 Operation: X -> M                                     N Z C I D V
                                                       _ _ _ _ _ _
                                (Ref: 7.2)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Zero Page     |   STX Oper            |    86   |    2    |    3     |
 |  Zero Page,Y   |   STX Oper,Y          |    96   |    2    |    4     |
 |  Absolute      |   STX Oper            |    8E   |    3    |    4     |
 +----------------+-----------------------+---------+---------+----------+

STY — Store index Y in memory

 Operation: Y -> M                                     N Z C I D V
                                                       _ _ _ _ _ _
                                (Ref: 7.3)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Zero Page     |   STY Oper            |    84   |    2    |    3     |
 |  Zero Page,X   |   STY Oper,X          |    94   |    2    |    4     |
 |  Absolute      |   STY Oper            |    8C   |    3    |    4     |
 +----------------+-----------------------+---------+---------+----------+

TAX — Transfer accumulator to index X

 Operation:  A -> X                                    N Z C I D V
                                                       / / _ _ _ _
                                (Ref: 7.11)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   TAX                 |    AA   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

TAY — Transfer accumulator to index Y

 Operation:  A -> Y                                    N Z C I D V
                                                       / / _ _ _ _
                                (Ref: 7.13)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   TAY                 |    A8   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

TSX — Transfer stack pointer to index X

 Operation:  S -> X                                    N Z C I D V
                                                       / / _ _ _ _
                                (Ref: 8.9)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   TSX                 |    BA   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

TXA — Transfer index X to accumulator

                                                       N Z C I D V
 Operation:  X -> A                                    / / _ _ _ _
                                (Ref: 7.12)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   TXA                 |    8A   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

TXS — Transfer index X to stack pointer

                                                       N Z C I D V
 Operation:  X -> S                                    _ _ _ _ _ _
                                (Ref: 8.8)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   TXS                 |    9A   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

TYA — Transfer index Y to accumulator

 Operation:  Y -> A                                    N Z C I D V
                                                       / / _ _ _ _
                                (Ref: 7.14)
 +----------------+-----------------------+---------+---------+----------+
 | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles|
 +----------------+-----------------------+---------+---------+----------+
 |  Implied       |   TYA                 |    98   |    1    |    2     |
 +----------------+-----------------------+---------+---------+----------+

Instruction Addressing Modes and Related Execution Times

 +------------------------------------------------------------------------
 | INSTRUCTION ADDRESSING MODES AND RELATED EXECUTION TIMES
 | (in clock cycles)
 +------------------------------------------------------------------------
                 A   A   A   B   B   B   B   B   B   B   B   B   B   C
                 D   N   S   C   C   E   I   M   N   P   R   V   V   L
                 C   D   L   C   S   Q   T   I   E   L   K   C   S   C
 Accumulator  |  .   .   2   .   .   .   .   .   .   .   .   .   .   .
 Immediate    |  2   2       .   .   .   .   .   .   .   .   .   .   .
 Zero Page    |  3   3   5   .   .   .   3   .   .   .   .   .   .   .
 Zero Page,X  |  4   4   6   .   .   .   .   .   .   .   .   .   .   .
 Zero Page,Y  |  .   .   .   .   .   .   .   .   .   .   .   .   .   .
 Absolute     |  4   4   6   .   .   .   4   .   .   .   .   .   .   .
 Absolute,X   |  4*  4*  7   .   .   .   .   .   .   .   .   .   .   .
 Absolute,Y   |  4*  4*  .   .   .   .   .   .   .   .   .   .   .   .
 Implied      |  .   .   .   .   .   .   .   .   .   .   .   .   .   2
 Relative     |  .   .   .   2** 2** 2** .   2** 2** 2** 7   2** 2** .
 (Indirect,X) |  6   6   .   .   .   .   .   .   .   .   .   .   .   .
 (Indirect),Y |  5*  5*  .   .   .   .   .   .   .   .   .   .   .   .
 Abs. Indirect|  .   .   .   .   .   .   .   .   .   .   .   .   .   .
              +-----------------------------------------------------------
                 C   C   C   C   C   C   D   D   D   E   I   I   I   J
                 L   L   L   M   P   P   E   E   E   O   N   N   N   M
                 D   I   V   P   X   Y   C   X   Y   R   C   X   Y   P
 Accumulator  |  .   .   .   .   .   .   .   .   .   .   .   .   .   .
 Immediate    |  .   .   .   2   2   2   .   .   .   2   .   .   .   .
 Zero Page    |  .   .   .   3   3   3   5   .   .   3   5   .   .   .
 Zero Page,X  |  .   .   .   4   .   .   6   .   .   4   6   .   .   .
 Zero Page,Y  |  .   .   .   .   .   .   .   .   .   .   .   .   .   .
 Absolute     |  .   .   .   4   4   4   6   .   .   4   6   .   .   3
 Absolute,X   |  .   .   .   4*  .   .   7   .   .   4*  7   .   .   .
 Absolute,Y   |  .   .   .   4*  .   .   .   .   .   4*  .   .   .   .
 Implied      |  2   2   2   .   .   .   .   2   2   .   .   2   2   .
 Relative     |  .   .   .   .   .   .   .   .   .   .   .   .   .   .
 (Indirect,X) |  .   .   .   6   .   .   .   .   .   6   .   .   .   .
 (Indirect),Y |  .   .   .   5*  .   .   .   .   .   5*  .   .   .   .
 Abs. Indirect|  .   .   .   .   .   .   .   .   .   .   .   .   .   5
              +-----------------------------------------------------------
    *  Add one cycle if indexing across page boundary
    ** Add one cycle if branch is taken, Add one additional if branching
       operation crosses page boundary
 ------------------------------------------------------------------------+
   INSTRUCTION ADDRESSING MODES AND RELATED EXECUTION TIMES              |
   (in clock cycles)                                                     |
 ------------------------------------------------------------------------+
                 J   L   L   L   L   N   O   P   P   P   P   R   R   R
                 S   D   D   D   S   O   R   H   H   L   L   O   O   T
                 R   A   X   Y   R   P   A   A   P   A   P   L   R   I
 Accumulator  |  .   .   .   .   2   .   .   .   .   .   .   2   2   .
 Immediate    |  .   2   2   2   .   .   2   .   .   .   .   .   .   .
 Zero Page    |  .   3   3   3   5   .   3   .   .   .   .   5   5   .
 Zero Page,X  |  .   4   .   4   6   .   4   .   .   .   .   6   6   .
 Zero Page,Y  |  .   .   4   .   .   .   .   .   .   .   .   .   .   .
 Absolute     |  6   4   4   4   6   .   4   .   .   .   .   6   6   .
 Absolute,X   |  .   4*  .   4*  7   .   4*  .   .   .   .   7   7   .
 Absolute,Y   |  .   4*  4*  .   .   .   4*  .   .   .   .   .   .   .
 Implied      |  .   .   .   .   .   2   .   3   3   4   4   .   .   6
 Relative     |  .   .   .   .   .   .   .   .   .   .   .   .   .   .
 (Indirect,X) |  .   6   .   .   .   .   6   .   .   .   .   .   .   .
 (Indirect),Y |  .   5*  .   .   .   .   5*  .   .   .   .   .   .   .
 Abs. Indirect|  .   .   .   .   .   .   .   .   .   .   .   .   .   .
              +-----------------------------------------------------------
                 R   S   S   S   S   S   S   S   T   T   T   T   T   T
                 T   B   E   E   E   T   T   T   A   A   S   X   X   Y
                 S   C   C   D   I   A   X   Y   X   Y   X   A   S   A
 Accumulator  |  .   .   .   .   .   .   .   .   .   .   .   .   .   .
 Immediate    |  .   2   .   .   .   .   .   .   .   .   .   .   .   .
 Zero Page    |  .   3   .   .   .   3   3   3   .   .   .   .   .   .
 Zero Page,X  |  .   4   .   .   .   4   .   4   .   .   .   .   .   .
 Zero Page,Y  |  .   .   .   .   .   .   4   .   .   .   .   .   .   .
 Absolute     |  .   4   .   .   .   4   4   4   .   .   .   .   .   .
 Absolute,X   |  .   4*  .   .   .   5   .   .   .   .   .   .   .   .
 Absolute,Y   |  .   4*  .   .   .   5   .   .   .   .   .   .   .   .
 Implied      |  6   .   2   2   2   .   .   .   2   2   2   2   2   2
 Relative     |  .   .   .   .   .   .   .   .   .   .   .   .   .   .
 (Indirect,X) |  .   6   .   .   .   6   .   .   .   .   .   .   .   .
 (Indirect),Y |  .   5*  .   .   .   6   .   .   .   .   .   .   .   .
 Abs. Indirect|  .   .   .   .   .   .   .   .   .   .   .   .   .   .
              +-----------------------------------------------------------
    *  Add one cycle if indexing across page boundary
    ** Add one cycle if branch is taken, Add one additional if branching
       operation crosses page boundary

Opcode Table

00 BRK 20 JSR 40 RTI 60 RTS 80 A0 LDY Immediate C0 CPY Immediate E0 CPX Immediate
01 ORA (Indirect,X) 21 AND (Indirect,X) 41 EOR (Indirect,X) 61 ADC (Indirect,X) 81 STA (Indirect,X) A1 LDA (Indirect,X) C1 CMP (Indirect,X) E1 SBC (Indirect,X)
02 22 42 62 82 A2 LDX Immediate C2 E2
03 23 43 63 83 A3 C3 E3
04 24 BIT Zero Page 44 64 84 STY Zero Page A4 LDY Zero Page C4 CPY Zero Page E4 CPX Zero Page
05 ORA Zero Page 25 AND Zero Page 45 EOR Zero Page 65 ADC Zero Page 85 STA Zero Page A5 LDA Zero Page C5 CMP Zero Page E5 SBC Zero Page
06 ASL Zero Page 26 ROL Zero Page 46 LSR Zero Page 66 ROR Zero Page 86 STX Zero Page A6 LDX Zero Page C6 DEC Zero Page E6 INC Zero Page
07 27 47 67 87 A7 C7 E7
08 PHP 28 PLP 48 PHA 68 PLA 88 DEY A8 TAY C8 INY E8 INX
09 ORA Immediate 29 AND Immediate 49 EOR Immediate 69 ADC Immediate 89 A9 LDA Immediate C9 CMP Immediate E9 SBC Immediate
0A ASL Accumulator 2A ROL Accumulator 4A LSR Accumulator 6A ROR Accumulator 8A TXA AA TAX CA DEX EA NOP
0B 2B 4B 6B 8B AB CB EB
0C 2C BIT Absolute 4C JMP Absolute 6C JMP Indirect 8C STY Absolute AC LDY Absolute CC CPY Absolute EC CPX Absolute
0D ORA Absolute 2D AND Absolute 4D EOR Absolute 6D ADC Absolute 8D STA Absolute AD LDA Absolute CD CMP Absolute ED SBC Absolute
0E ASL Absolute 2E ROL Absolute 4E LSR Absolute 6E ROR Absolute 8E STX Absolute AE LDX Absolute CE DEC Absolute EE INC Absolute
0F 2F 4F 6F 8F AF CF EF
10 BPL 30 BMI 50 BVC 70 BVS 90 BCC B0 BCS D0 BNE F0 BEQ
11 ORA (Indirect),Y 31 AND (Indirect),Y 51 EOR (Indirect),Y 71 ADC (Indirect),Y 91 STA (Indirect),Y B1 LDA (Indirect),Y D1 CMP (Indirect),Y F1 SBC (Indirect),Y
12 32 52 72 92 B2 D2 F2
13 33 53 73 93 B3 D3 F3
14 34 54 74 94 STY Zero Page,X B4 LDY Zero Page,X D4 F4
15 ORA Zero Page,X 35 AND Zero Page,X 55 EOR Zero Page,X 75 ADC Zero Page,X 95 STA Zero Page,X B5 LDA Zero Page,X D5 CMP Zero Page,X F5 SBC Zero Page,X
16 ASL Zero Page,X 36 ROL Zero Page,X 56 LSR Zero Page,X 76 ROR Zero Page,X 96 STX Zero Page,Y B6 LDX Zero Page,Y D6 DEC Zero Page,X F6 INC Zero Page,X
17 37 57 77 97 B7 D7 F7
18 CLC 38 SEC 58 CLI 78 SEI 98 TYA B8 CLV D8 CLD F8 SED
19 ORA Absolute,Y 39 AND Absolute,Y 59 EOR Absolute,Y 79 ADC Absolute,Y 99 STA Absolute,Y B9 LDA Absolute,Y D9 CMP Absolute,Y F9 SBC Absolute,Y
1A 3A 5A 7A 9A TXS BA TSX DA FA
1B 3B 5B 7B 9B BB DB FB
1C 3C 5C 7C 9C BC LDY Absolute,X DC FC
1D ORA Absolute,X 3D AND Absolute,X 5D EOR Absolute,X 7D ADC Absolute,X 9D STA Absolute,X BD LDA Absolute,X DD CMP Absolute,X FD SBC Absolute,X
1E ASL Absolute,X 3E ROL Absolute,X 5E LSR Absolute,X 7E ROR Absolute,X 9E BE LDX Absolute,Y DE DEC Absolute,X FE INC Absolute,X
1F 3F 5F 7F 9F BF DF FF

Instruction Operation

The following code has been taken from VICE for the purposes of showing how each instruction operates. No particular addressing mode is used since we only wish to see the operation of the instruction itself.

    src : the byte of data that is being addressed.
    SET_SIGN : sets\resets the sign flag depending on bit 7.
    SET_ZERO : sets\resets the zero flag depending on whether the result
               is zero or not.
    SET_CARRY(condition) : if the condition has a non-zero value then the
               carry flag is set, else it is reset.
    SET_OVERFLOW(condition) : if the condition is true then the overflow
               flag is set, else it is reset.
    SET_INTERRUPT :  }
    SET_BREAK :      }  As for SET_CARRY and SET_OVERFLOW.
    SET_DECIMAL :    }
    REL_ADDR(PC, src) : returns the relative address obtained by adding
               the displacement src to the PC.
    SET_SR : set the Program Status Register to the value given.
    GET_SR : get the value of the Program Status Register.
    PULL : Pull a byte off the stack.
    PUSH : Push a byte onto the stack.
    LOAD : Get a byte from the memory address.
    STORE : Store a byte in a memory address.
    IF_CARRY, IF_OVERFLOW, IF_SIGN, IF_ZERO etc : Returns true if the
               relevant flag is set, otherwise returns false.
    clk : the number of cycles an instruction takes. This is shown below
               in situations where the number of cycles changes depending
               on the result of the instruction (eg. Branching instructions).
    AC = Accumulator
    XR = X register
    YR = Y register
    PC = Program Counter
    SP = Stack Pointer
/* ADC */
    unsigned int temp = src + AC + (IF_CARRY() ? 1 : 0);
    SET_ZERO(temp & 0xff);	/* This is not valid in decimal mode */
    if (IF_DECIMAL()) {
        if (((AC & 0xf) + (src & 0xf) + (IF_CARRY() ? 1 : 0)) > 9) temp += 6;
	SET_SIGN(temp);
	SET_OVERFLOW(!((AC ^ src) & 0x80) && ((AC ^ temp) & 0x80));
	if (temp > 0x99) temp += 96;
	SET_CARRY(temp > 0x99);
    } else {
	SET_SIGN(temp);
	SET_OVERFLOW(!((AC ^ src) & 0x80) && ((AC ^ temp) & 0x80));
	SET_CARRY(temp > 0xff);
    }
    AC = ((BYTE) temp);

/* AND */
    src &= AC;
    SET_SIGN(src);
    SET_ZERO(src);
    AC = src;

/* ASL */
    SET_CARRY(src & 0x80);
    src <<= 1;
    src &= 0xff;
    SET_SIGN(src);
    SET_ZERO(src);
    STORE src in memory or accumulator depending on addressing mode.

/* BCC */
    if (!IF_CARRY()) {
	clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1);
	PC = REL_ADDR(PC, src);
    }

/* BCS */
    if (IF_CARRY()) {
	clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1);
	PC = REL_ADDR(PC, src);
    }

/* BEQ */
    if (IF_ZERO()) {
	clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1);
	PC = REL_ADDR(PC, src);
    }

/* BIT */
    SET_SIGN(src);
    SET_OVERFLOW(0x40 & src);	/* Copy bit 6 to OVERFLOW flag. */
    SET_ZERO(src & AC);

/* BMI */
    if (IF_SIGN()) {
	clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1);
	PC = REL_ADDR(PC, src);
    }

/* BNE */
    if (!IF_ZERO()) {
	clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1);
	PC = REL_ADDR(PC, src);
    }

/* BPL */
    if (!IF_SIGN()) {
	clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1);
	PC = REL_ADDR(PC, src);
    }

/* BRK */
    PC++;
    PUSH((PC >> 8) & 0xff);	/* Push return address onto the stack. */
    PUSH(PC & 0xff);
    SET_BREAK((1));             /* Set BFlag before pushing */
    PUSH(SR);
    SET_INTERRUPT((1));
    PC = (LOAD(0xFFFE) | (LOAD(0xFFFF) << 8));

/* BVC */
    if (!IF_OVERFLOW()) {
	clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1);
	PC = REL_ADDR(PC, src);
    }

/* BVS */
    if (IF_OVERFLOW()) {
	clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1);
	PC = REL_ADDR(PC, src);
    }

/* CLC */
    SET_CARRY((0));

/* CLD */
    SET_DECIMAL((0));

/* CLI */
    SET_INTERRUPT((0));

/* CLV */
    SET_OVERFLOW((0));

/* CMP */
    src = AC - src;
    SET_CARRY(src < 0x100);
    SET_SIGN(src);
    SET_ZERO(src &= 0xff);

/* CPX */
    src = XR - src;
    SET_CARRY(src < 0x100);
    SET_SIGN(src);
    SET_ZERO(src &= 0xff);

/* CPY */
    src = YR - src;
    SET_CARRY(src < 0x100);
    SET_SIGN(src);
    SET_ZERO(src &= 0xff);

/* DEC */
    src = (src - 1) & 0xff;
    SET_SIGN(src);
    SET_ZERO(src);
    STORE(address, (src));

/* DEX */
    unsigned src = XR;
    src = (src - 1) & 0xff;
    SET_SIGN(src);
    SET_ZERO(src);
    XR = (src);

/* DEY */
    unsigned src = YR;
    src = (src - 1) & 0xff;
    SET_SIGN(src);
    SET_ZERO(src);
    YR = (src);

/* EOR */
    src ^= AC;
    SET_SIGN(src);
    SET_ZERO(src);
    AC = src;

/* INC */
    src = (src + 1) & 0xff;
    SET_SIGN(src);
    SET_ZERO(src);
    STORE(address, (src));

/* INX */
    unsigned src = XR;
    src = (src + 1) & 0xff;
    SET_SIGN(src);
    SET_ZERO(src); 
    XR = (src);

/* INY */
    unsigned src = YR;
    src = (src + 1) & 0xff;
    SET_SIGN(src);
    SET_ZERO(src);
    YR = (src);

/* JMP */
    PC = (src);

/* JSR */
    PC--;
    PUSH((PC >> 8) & 0xff);	/* Push return address onto the stack. */
    PUSH(PC & 0xff);
    PC = (src);

/* LDA */
    SET_SIGN(src);
    SET_ZERO(src);
    AC = (src);

/* LDX */
    SET_SIGN(src);
    SET_ZERO(src);
    XR = (src);

/* LDY */
    SET_SIGN(src);
    SET_ZERO(src);
    YR = (src);

/* LSR */
    SET_CARRY(src & 0x01);
    src >>= 1;
    SET_SIGN(src);
    SET_ZERO(src);
    STORE src in memory or accumulator depending on addressing mode.

/* NOP */
    Nothing.

/* ORA */
    src |= AC;
    SET_SIGN(src);
    SET_ZERO(src);
    AC = src;

/* PHA */
    src = AC;
    PUSH(src);

/* PHP */
    src = GET_SR;
    PUSH(src);

/* PLA */
    src = PULL();
    SET_SIGN(src);	/* Change sign and zero flag accordingly. */
    SET_ZERO(src);

/* PLP */
    src = PULL();
    SET_SR((src));

/* ROL */
    src <<= 1;
    if (IF_CARRY()) src |= 0x1;
    SET_CARRY(src > 0xff);
    src &= 0xff;
    SET_SIGN(src);
    SET_ZERO(src);
    STORE src in memory or accumulator depending on addressing mode.

/* ROR */
    if (IF_CARRY()) src |= 0x100;
    SET_CARRY(src & 0x01);
    src >>= 1;
    SET_SIGN(src);
    SET_ZERO(src);
    STORE src in memory or accumulator depending on addressing mode.

/* RTI */
    src = PULL();
    SET_SR(src);
    src = PULL();
    src |= (PULL() << 8);	/* Load return address from stack. */
    PC = (src);

/* RTS */
    src = PULL();
    src += ((PULL()) << 8) + 1;	/* Load return address from stack and add 1. */
    PC = (src);

/* SBC */
    unsigned int temp = AC - src - (IF_CARRY() ? 0 : 1);
    SET_SIGN(temp);
    SET_ZERO(temp & 0xff);	/* Sign and Zero are invalid in decimal mode */
    SET_OVERFLOW(((AC ^ temp) & 0x80) && ((AC ^ src) & 0x80));
    if (IF_DECIMAL()) {
	if ( ((AC & 0xf) - (IF_CARRY() ? 0 : 1)) < (src & 0xf)) /* EP */ temp -= 6;
	if (temp > 0x99) temp -= 0x60;
    }
    SET_CARRY(temp < 0x100);
    AC = (temp & 0xff);

/* SEC */
    SET_CARRY((1));

/* SED */
    SET_DECIMAL((1));

/* SEI */
    SET_INTERRUPT((1));

/* STA */
    STORE(address, (src));

/* STX */
    STORE(address, (src));

/* STY */
    STORE(address, (src));

/* TAX */
    unsigned src = AC;
    SET_SIGN(src);
    SET_ZERO(src);
    XR = (src);

/* TAY */
    unsigned src = AC;
    SET_SIGN(src);
    SET_ZERO(src);
    YR = (src);

/* TSX */
    unsigned src = SP;
    SET_SIGN(src);
    SET_ZERO(src);
    XR = (src);

/* TXA */
    unsigned src = XR;
    SET_SIGN(src);
    SET_ZERO(src);
    AC = (src);

/* TXS */
    unsigned src = XR;
    SP = (src);

/* TYA */
    unsigned src = YR;
    SET_SIGN(src);
    SET_ZERO(src);
    AC = (src);

Summary of 6502 Opcodes

ADC   Add to accumulator with carry.
AND   "AND" with accumulator.
ASL   Arithmetic Shift Left. Bit0=0 C=Bit7.
BCC   Branch on Carry Clear.
BCS   Branch on Carry Set.
BEQ   Branch on result Equal (zero).
BIT   Test bits in memory with accumulator.
BMI   Branch on result Minus.
BNE   Branch on result Not Equal (not zero).
BPL   Branch on result Plus.
BRK   Forced BREAK.
BVC   Branch on overflow Clear.
BVS   Branch on overflow Set.
CLC   Clear Carry flag.
CLD   Clear Decimal mode.
CLI   Clear Interrupt disable bit.
CLV   Clear overflow flag.
CMP   Compare with accumulator.
CPX   Compare with X register.
CPY   Compare with Y register.
DEC   Decrement memory by one.
DEX   Decrement X register by one.
DEY   Decrement Y register by one.
EOR   "Exclusive-OR" with accumulator.
INC   Increment memory by one.
INX   Increment X register by one.
INY   Increment Y register by one.
JMP   Unconditional Jump to new address.
JSR   Unconditional Jump, saving return address.
LDA   Load accumulator.
LDX   Load X register.
LDY   Load Y register.
LSR   Logical Shift Right. Bit7=0 C=Bit0.
NOP   No Operation.
ORA   "OR" with accumulator.
PHA   Push Accumulator on stack.
PHP   Push Processor status register on stack.
PLA   Pull Accumulator from stack.
PLP   Pull Processor status register from stack.
ROL   Rotate one bit Left (mem. or acc.).  C=Bit7 Bit0=C.
ROR   Rotate one bit Right (mem. or acc.).  C=Bit0 Bit7=C.
RTI   Return from Interrupt.
RTS   Return from Subroutine.
SBC   Subtract from accumulator with borrow.
SEC   Set Carry flag.
SED   Set Decimal mode.
SEI   Set Interrupt disable status.
STA   Store Accumulator in memory.
STX   Store X register in memory.
STY   Store Y register in memory.
TAX   Transfer Accumulator to X register.
TAY   Transfer Accumulator to Y register.
TSX   Transfer Stack pointer to X register.
TXA   Transfer X register to Accumulator.
TXS   Transfer X register to Stack pointer.
TYA   Transfer Y register to Accumulator.

The Processor Status Register, "P"
--- --------- ------ --------- ---

7 6 5 4 3 2 1 0
N V   B D I Z C

7   N    Negative
6   V    Overflow
5        <..Future expansion..>
4   B    BRK command
3   D    Decimal mode
2   I    IRQ disable
1   Z    Zero
0   C    Carry

Addressing Modes of 6502 Assembly Code
---------- ----- -- ---- -------- ----

LDA  #$07       Immediate mode
LDA  $1F        Zero page absolute
LDA  $0800      Absolute
CLC             Implied
JMP  ($0036)    Indirect absolute
LDA  $FE90,X    Absolute indexed (by X)
LDA  $FE90,Y    Absolute indexed (by Y)
LDA  $2A,X      Zero page indexed
LDA  ($2A,X)    Indexed indirect
LDA  ($2A),Y    Indirect indexed
BCC  $03        Relative
BCC  $0803      Relative (alternate form)
LSR  A          Accumulator
LSR             Accumulator (alternate form)