User:Lidnariq/DPCM mistuning: Difference between revisions

From NESdev Wiki
Jump to navigationJump to search
(provide intervals)
m (add periods for detuning tables)
Line 6: Line 6:
|-
|-
! kHz !! 33.14 !! 24.86 !! 21.31 !! 16.88 !! 13.98 !! 12.60 !! 11.19 !! 9.42 !! 8.36 !! 7.92 !! 7.05 !! 6.26 !! 5.59 !! 5.26 !! 4.71 !! 4.18
! kHz !! 33.14 !! 24.86 !! 21.31 !! 16.88 !! 13.98 !! 12.60 !! 11.19 !! 9.42 !! 8.36 !! 7.92 !! 7.05 !! 6.26 !! 5.59 !! 5.26 !! 4.71 !! 4.18
|-
! period !! 54 !!  72 !!  84 !! 106 !! 128 !! 142 !! 160 !! 190 !! 214 !! 226 !! 254 !! 286 !! 320 !! 340 !! 380 !! 428
|-
|-
! NTSC !! $F !! $E !! $D !! $C !! $B !! $A !! $9 !! $8 !! $7 !! $6 !! $5 !! $4 !! $3 !! $2 !! $1 !! $0
! NTSC !! $F !! $E !! $D !! $C !! $B !! $A !! $9 !! $8 !! $7 !! $6 !! $5 !! $4 !! $3 !! $2 !! $1 !! $0
Line 45: Line 47:
!kHz
!kHz
!33.25 !! 25.19 !! 21.32 !! 16.97 !! 14.09 !! 12.60 !! 11.23 !! 9.45 !! 8.40 !! 7.92 !! 7.04 !! 6.02 !! 5.58 !! 5.26 !! 4.70 !! 4.18
!33.25 !! 25.19 !! 21.32 !! 16.97 !! 14.09 !! 12.60 !! 11.23 !! 9.45 !! 8.40 !! 7.92 !! 7.04 !! 6.02 !! 5.58 !! 5.26 !! 4.70 !! 4.18
|-
! period !! 50 !!  66 !!  78 !!  98 !! 118 !! 132 !! 148 !! 176 !! 198 !! 210 !! 236 !! 276 !! 298 !! 316 !! 354 !! 398
|-
|-
! PAL !! $F !! $E !! $D !! $C !! $B !! $A !! $9 !! $8 !! $7 !! $6 !! $5 !! $4 !! $3 !! $2 !! $1 !! $0
! PAL !! $F !! $E !! $D !! $C !! $B !! $A !! $9 !! $8 !! $7 !! $6 !! $5 !! $4 !! $3 !! $2 !! $1 !! $0

Revision as of 18:18, 18 October 2014

How to read the tables:

Pick the table for your system. Find the rate (written to $4010) on the top or side. Numbers inside are measured in cents of detuning relative to the other rate. Red and blue indicate rates that will sound noticeably flat or sharp, using a Just-noticeable difference of 6 cents. Numbers in green specify the number of other rates that are in tune with the one selected.

kHz 33.14 24.86 21.31 16.88 13.98 12.60 11.19 9.42 8.36 7.92 7.05 6.26 5.59 5.26 4.71 4.18
period 54 72 84 106 128 142 160 190 214 226 254 286 320 340 380 428
NTSC $F $E $D $C $B $A $9 $8 $7 $6 $5 $4 $3 $2 $1 $0
$0 16.1 14.1 -19.0 -16.3 10.2 -10.1 -3.4 -5.9 0.0 -5.5 -3.3 2.1 -3.4 1.5 -5.9 9
$1 22.0 20.1 -13.0 -10.3 16.2 -4.1 2.5 0.0 5.9 0.4 2.6 8.0 2.5 7.4 8
$2 14.6 12.6 -20.5 -17.8 8.7 -11.6 -5.0 -7.4 -1.5 -7.1 -4.8 0.6 -5.0 6
$3 19.6 17.6 -15.5 -12.8 13.7 -6.6 0.0 -2.5 3.4 -2.1 0.1 5.5 9
$4 14.0 12.1 -21.1 -18.3 8.2 -12.1 -5.5 -8.0 -2.1 -7.6 -5.4 6
$5 19.4 17.5 -15.6 -12.9 13.6 -6.7 -0.1 -2.6 3.3 -2.2 9
$6 21.7 19.7 -13.4 -10.7 15.8 -4.5 2.1 -0.4 5.5 8
$7 16.1 14.1 -19.0 -16.3 10.2 -10.1 -3.4 -5.9 9
$8 22.0 20.1 -13.0 -10.3 16.2 -4.1 2.5 8
$9 19.6 17.6 -15.5 -12.8 13.7 -6.6 9
$A 26.2 24.2 -8.9 -6.2 20.3 3
$B 5.9 3.9 -29.2 -26.5 2
$C 32.4 30.4 -2.7 1
$D 35.1 33.1 1
$E 2.0 2
$F 2
kHz 33.25 25.19 21.32 16.97 14.09 12.60 11.23 9.45 8.40 7.92 7.04 6.02 5.58 5.26 4.70 4.18
period 50 66 78 98 118 132 148 176 198 210 236 276 298 316 354 398
PAL $F $E $D $C $B $A $9 $8 $7 $6 $5 $4 $3 $2 $1 $0
$0 8.7 -10.7 -21.5 -26.3 -4.8 -10.7 -12.6 -12.6 -8.7 -6.9 -4.8 -33.7 -0.9 0.6 -2.8 5
$1 11.5 -7.9 -18.6 -23.5 -2.0 -7.9 -9.8 -9.8 -5.9 -4.0 -2.0 -30.9 1.9 3.4 7
$2 8.1 -11.3 -22.1 -26.9 -5.4 -11.3 -13.2 -13.2 -9.3 -7.4 -5.4 -34.3 -1.5 5
$3 9.6 -9.7 -20.5 -25.4 -3.8 -9.7 -11.7 -11.7 -7.8 -5.9 -3.8 -32.8 6
$4 42.4 23.0 12.3 7.4 28.9 23.0 21.1 21.1 25.0 26.9 28.9 0
$5 13.5 -5.9 -16.7 -21.5 0.0 -5.9 -7.8 -7.9 -3.9 -2.1 9
$6 15.5 -3.8 -14.6 -19.4 2.1 -3.8 -5.8 -5.8 -1.9 9
$7 17.4 -2.0 -12.7 -17.6 3.9 -2.0 -3.9 -3.9 8
$8 21.3 2.0 -8.8 -13.7 7.9 2.0 0.0 5
$9 21.3 1.9 -8.9 -13.7 7.8 1.9 5
$A 19.4 0.0 -10.8 -15.6 5.9 7
$B 13.5 -5.9 -16.7 -21.5 9
$C 35.0 15.6 4.8 1
$D 30.1 10.8 1
$E 19.4 7
$F 0


In a fictional alternate universe, where the DPCM period tables had been chosen to maximize in-tune choices, perhaps the periods would have instead been some subset of the following rates:

interval P1 m2 M2 m3 M3 P4 d5 P5 m6 M6 m7 M7
period 48 54 64 68 72 76
96 102 108 114 128 136 144 152 162
192 204 216 228 242 256 272 288 304 322 342 362

All of these are within 6 cents of an exact number of semitones relative to period 48.

Better would be to have the user specify the actual divider, for numbers from 2 to 512. Numbers less than 50 may have a reason to be missing from the current table, so maybe some workaround (prohibition or offset) would be warranted. the IRQ and Loop flags would have to be moved for this behavior, though.